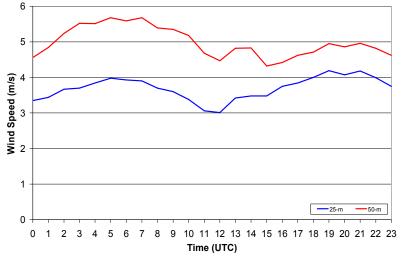
October 2003 Wind Summary Langston University Regents Tower Sensors at 25 m and 50 m

Height
25 m (82 ft)
50 m (164 ft)


Average Wind Speed 3.59 m/s (8.03 mph) 4.93 m/s (11.03 mph)

16%

Wind Power Density 62.7 W/m² 133.8 W/m²

Figure A. Diurnal Wind Speed Pattern

s

LANG October 2003 Rose Plot: 50 m

Percent of Total Time

Percent of Total Wind Energy

SSW

Version Date: 8/26/2009

BACKGROUND – On April 17, 2003, the Oklahoma Wind Power Initiative (OWPI) installed instruments on the Langston University Regents tower. The install work was funded by the National Renewable Energy Laboratory (NREL) and US DOE's Wind Powering America (WPA) program in cooperation with outreach efforts by the Community Based Renewable Energy Coalition (CBREC) and Langston University to promote development of renewable energy for communities of color.

SUMMARY – (Figure A) The average wind speeds for each hour, also known as diurnal wind speeds, are plotted for the month at 25 m and 50 m. The graph shows the variation in wind speeds throughout the day. Typically near the surface wind speeds increase during afternoon heating.

(Figure B) The wind rose shows the directional distribution of wind speeds and wind energy for the month at 50 meters. The winds were from the south and south-southeast 24.6% of the time and accounted for 52.3% of the wind energy.

(Figure C) The frequency distribution chart can be used in conjunction with a wind turbine power curve to estimate potential energy production. Categories or bins are labeled with the center point and have a width of 1 m/s. For example, the 4.5 m/s bin has a frequency of 15.9%, so wind speeds between 4 and 5 m/s occur 15.9% of the time.

Figure C. Frequency Distribution of Wind Speeds at 50 m